
 

Title: System Dynamics Analysis of Milk Frother 
 
Topic of Interest: Milk Frother 
 
Abstract: This project focuses on the development of a dynamic system and open-loop analysis 
of a milk frother following its dissection to understand the motion and system. This system is 
simple, as it has no sensory feedback, making it a purely open loop system. We plan to create a 
model of the system and describe its open loop system including the steady state behavior and 
step response. Then, we will define transfer functions and use Matlab to make Bode plots. 
 
Students/Roles: 

Student  Task/Role Portfolio 

Ian State space/block diagram 
 
 

https://mc2839.github.io/fa25-ian-ch
en/projects/MAE3260%20Systems%2
0Dissection/  

Megan Steady state, step response, 
disturbance 
 

https://cornell-mae-ug.github.io/sprin
g-2025-portfolio-Megan327/projects/
F-SystemsDissection/ 

Ayanna Matlab and plots 
 
 

https://cornell-mae-ug.github.io/fa25
-portfolio-asf225-stack/projects/Syste
ms/ 

Caroline Transfer Functions 
 
 

https://cornell-mae-ug.github.io/fa25
-portfolio-c876pm224/projects/Syste
m_Dynamics_Milk_Frother/ 

 
Non-exhaustive list of concepts or skills to explore and demonstrate: 

●​ Models: 

o​ ODEs 
o​ TFs 
o​ State space 
o​ Block diagrams 

●​ Open-loop system: 

o​ Steady state behavior 
o​ Step or frequency response 
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Milk Frother: 

 
Figure 1: milk frother dissected 

 
The whisk is driven by a 3 coil brushless DC motor powered by batteries. The motor is 
connected to a shaft via a spring. The spring acts as a flexible coupler between the motor and 
the shaft so the two do not have to be perfectly aligned. When powered, the whisk will start 
turning counterclockwise (when looking down from the handle). Then, it seems to operate at a 
constant steady steady rotation rate. When powered off, the whisk starts slowing and 
eventually comes to an abrupt stop. 
 

Open Loop Behavior: 
To observe the open loop behavior, we turned on the milk frother and waited for it to reach 
steady state. Then, we used a high speed camera to record the behavior. 1275 frames were 
recorded at 900 frames per second. The video was played back at approximately 30 frames per 
second. We manually counted 40 rotations for 6 seconds. This means that our milk frother’s 
steady state speed was around 12000 rotations per minute or 1240 rad/s. This is similar to the 
reported RPM of milk frothers on the internet. 
 
Then, we recorded the step response of the milk frother. To do this, we started from a steady 
state and turned off the frother. Every 60 frames (2 seconds of the playback video), the angular 
velocity was approximated by counting the number of frames for one rotation. 
 

Ramp Down Data Collection: 
When finding the angular velocity at different times in the video, we looked at the high speed 
video frame by frame. Within the ramp down video of the milk frother, the video took 900 
frames per second(fps), this resulted in a 44 second video from about 1.4 seconds worth of live 
content. From there, we measured how many frames it took for one full rotation(fpr) every two 
seconds of the video. This allows us to find the rpm at each second of the video, and then the 
rpm at each second in real time. 
Finding rpm per each second of the video: 
 

 



 

 𝑟𝑝𝑚
𝑣𝑖𝑑𝑒𝑜 𝑠𝑒𝑐𝑜𝑛𝑑

= 60*𝑓𝑝𝑟
𝑓𝑝𝑠

 
Converting the times in the video to time in real life: 

 𝑡
𝑟𝑒𝑎𝑙

=
𝑡

𝑣𝑖𝑑𝑒𝑜
* 𝐹𝑟𝑎𝑚𝑒𝑠 𝑖𝑛 𝑉𝑖𝑑𝑒𝑜

𝑓𝑝𝑠

𝑉𝑖𝑑𝑒𝑜 𝐿𝑒𝑛𝑔𝑡ℎ

 

Ramp Down Data: 
Following the steps outlined above, we collected and graphed the following data: 

 
Figure 2: rotation rate measured every 2 seconds for the on to off step response of the frother 

 

System Dynamics: 
To accurately describe the system dynamics of the milk frother as it ramps down, we need to 
determine which physical damping model is best and how this helps us extract information 
about how the motor and whisk loses power. The rotational speed can decay due to various 
reasons such as friction in the bearings, leading to viscous damping modeled by: 

 

 ω(𝑡) =  ω
0
𝑒−𝑡/τ

 
ω(t): angular velocity as a function of time (rad/s) 
ω0: angular velocity at switch-off (initial condition) (rad/s) 
t: time since switch-off (s) 

 



 

τ: time constant for exponential decay, τ=J/b (s).​
b: linear (viscous) damping coefficient (N·m·s/rad).​
 
If instead the decay is dominated by aerodynamic drag, it is governed by a quadratic torque 
model, algebraically represented by: 
 

  
1

ω(𝑡) = 1
ω

0
+ 𝑐

𝐽 𝑡

 
J: moment of inertia of rotor + whisk (kg·m²) 
c: quadratic (aerodynamic) drag coefficient (N·m·s²/rad²), with drag torque τdrag=−cω2. 
 
Lastly, if the decay is a mix of both aerodynamic drag and viscous damping, we get a mixed 
linear model described by: 
 

 𝐽 𝑑ω
𝑑𝑡 + 𝑏ω + 𝑐ω2 = 0

 
A MatLab script can then be written, comparing the models and their accuracy (via R2) to 
identify which physical model fits the milk frother coast down the best. This allows us to 
estimate certain system parameters. 
 
MatLab output (code in Appendix) 

 



 

The R2 value is the highest for the viscous model, implying that the ramp down systems 
dynamics is dominated by viscous damping, likely from the friction in the motor. While the code 
calculates constants from the slope in each graph. Since we can now determine the system to 
be dominated by viscous damping, we don't look at the c/J, a, and b values, as the tau is the 
most accurate. 
 
Since we are only now looking at the viscous model, the time constant was calculated to be {}s. 
We also manually timed the time it took for frother to fully stop, averaging out to 1.846s. 
 

 7.16902 - 4.87911 = 2.28991 ∆𝑙𝑛(ω) =
 

0.632 =  7.16902 - 0.632 (2.28991) = 5.722 ω
0

−  𝑦
𝑠𝑠

 
From the MatLab plot, this corresponds to a  of 0.8528. With a  of 0.5893 calculated by  = τ τ τ
-1/slope in the code, this leads to a 44.71% error, which while large, is acceptable when putting 
the scale of the values into reference. Since this is a first order system, the difference between  τ
values only scales the time axis, stretching the graph, it does not distort the overall shape of the 
model.  
 
We can also then calculate J/b: 

 τ = 𝐽/𝑏 = 0. 8528
 

State Space Model: 
 
Our system is a first-order ODE, therefore to find the space state model of this system, we take 
the state so that it is the output.  Therefore, and  . 𝑥 = ω,  ẋ = ω̇
 
The resulting function becomes: 

 𝐽ẋ + 𝑏𝑥 = 𝐾𝑢(𝑡)
 

Solving for the state equations:  

 ẋ =  − 𝑏
𝐽⎡⎣ ⎤⎦ 𝑥 + 𝑘

𝐽⎡⎣ ⎤⎦ 𝑢(𝑡)
 

The output is the same as the state, therefore the equation for the output is:  
 

 𝑦 = 𝑥 = ω
 
The state-space matrices  become:  𝐴, 𝐵, 𝐶, 𝐷
 

        ,      ,      𝐴 = − 𝑏
𝐽⎡⎣ ⎤⎦ 𝑥, 𝐵 = 𝐾

𝐽⎡⎣ ⎤⎦ 𝑢(𝑡) 𝐶 = [1]𝑥 𝐷 = [0]
 

 



 

Block Diagram: 

 
The transfer function of the ODE is:  

 𝐺(𝑠) =  Ω(𝑠)
𝑈(𝑠) = 𝐾

𝐽𝑠+𝑏
 
Therefore, the block diagram for this system becomes:​
 

 

●​ u(t) represents the electrical input, specifically the motor’s applied voltage, provided by 
the batteries. 

●​ K represents the actuator gain, characterizing the efficiency in which the motor converts 
the input voltage into torque.  

●​ 1/Js+b represents the plant, converting torque into angular velocity. The term Js 
captures the rotor’s rotational inertia, and b represents viscous damping from fluid.  

●​ ω(t) represents the system output in angular speed.  

 
 

Changing Disturbance: 
To use the milk frother, it needs to spin in milk, not air. We were unable to document this 
behavior, but we can discuss what would happen to the system if the disturbance is different. A 
different fluid would change the drag force on the whisk, which means there would be an extra 
drag factor of . This means the governing equation from above would still hold, except the 𝑏ω
time constant and damping value would be different depending on the fluid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

MatLab Code: 
 

% --- RAW DATA --- 
t = [ ... 
0.0000 
0.0675 
0.1349 
0.2024 
0.2699 
0.3374 
0.4048 
0.4723 
0.5398 
0.6073 
0.6747 
0.7422 
0.8097 
0.8772 
0.9446 
1.0121 
1.0796 
1.1471 
1.2145 
1.3495 
];   % time in seconds 
rpm = [ ... 
10800 
9000 
9000 
7714.285714 
6750 
6750 
6750 
6000 
5400 
5400 
4695.652174 
4320 
3857.142857 
3272.727273 
3000 
2571.428571 
2204.081633 
1800 
1285.714286 
642.8571429 

 



 

];   % measured rpm values 

 

% Convert rpm → rad/s 
omega = rpm * 2*pi/60; 

 

%% =============================== 
%  1. VISCOUS DAMPING TEST 
%     ω(t) = ω0 * exp(-t/τ) 
% ================================ 
ln_omega = log(omega); 
% Linear regression: ln(ω) = a + b t 
p_visc = polyfit(t, ln_omega, 1); 
ln_fit = polyval(p_visc, t); 
% Extract time constant τ 
tau = -1/p_visc(1); 
% Compute R² 
SS_res_visc = sum((ln_omega - ln_fit).^2); 
SS_tot_visc = sum((ln_omega - mean(ln_omega)).^2); 
R2_visc = 1 - SS_res_visc/SS_tot_visc; 

 

%% =============================== 
%  2. QUADRATIC DRAG TEST 
%     1/ω(t) = 1/ω0 + (c/J)t 
% ================================ 
inv_omega = 1 ./ ln_omega; 
% Linear regression 
p_quad = polyfit(t, inv_omega, 1); 
inv_fit = polyval(p_quad, t); 
% Extract slope = c/J 
c_over_J = p_quad(1); 
% Compute R² 
SS_res_quad = sum((inv_omega - inv_fit).^2); 
SS_tot_quad = sum((inv_omega - mean(inv_omega)).^2); 
R2_quad = 1 - SS_res_quad/SS_tot_quad; 

 

%% =============================== 
%  3. MIXED MODEL (NONLINEAR FIT) 
%     dω/dt = -a ω - b ω² 
% ================================ 

% Numerically estimate dω/dt 
domega = gradient(omega, t); 
% ODE model: domega/dt = -a*omega - b*omega.^2 
model_fun = @(p, w)  -(p(1)*w + p(2)*w.^2); 
% Nonlinear least squares fit 
p0 = [0.1, 0.001];   % initial guess [a, b] 

 



 

p_mixed = lsqcurvefit(model_fun, p0, omega, domega); 
a = p_mixed(1); 
b = p_mixed(2); 
% Mixed model prediction 
domega_fit = model_fun(p_mixed, omega); 
% Compute R² 
SS_res_mixed = sum((domega - domega_fit).^2); 
SS_tot_mixed = sum((domega - mean(domega)).^2); 
R2_mixed = 1 - SS_res_mixed/SS_tot_mixed; 

 

%% =============================== 
%  REPORT RESULTS 
% ================================ 
fprintf('\n===== MODEL FIT RESULTS =====\n'); 
fprintf('Viscous model R^2:     %.4f   (tau = %.4f s)\n', R2_visc, tau); 
fprintf('Quadratic model R^2:   %.4f   (c/J = %.6f)\n', R2_quad, c_over_J); 
fprintf('Mixed model R^2:       %.4f   (a = %.6f, b = %.6f)\n', R2_mixed, a, 
b); 
% Determine best model 
[~, idx] = max([R2_visc, R2_quad, R2_mixed]); 
models = ["Viscous", "Quadratic", "Mixed"]; 
fprintf('\n>>> BEST MODEL: %s <<<\n\n', models(idx)); 
y_target = 5.722; 
x_target = (y_target - p_visc(2)) / p_visc(1); 

 

%% =============================== 
%  PLOTS 
% ================================ 

figure; 
subplot(3,1,1) 
scatter(t, ln_omega, 'filled'); hold on 
plot(t, ln_fit, 'r', 'LineWidth', 1.5) 
title('Viscous Test: ln(\omega) vs t') 
ylabel('ln(\omega)') 
subplot(3,1,2) 
scatter(t, inv_omega, 'filled'); hold on 
plot(t, inv_fit, 'r', 'LineWidth', 1.5) 
title('Quadratic Test: 1/\omega vs t') 
ylabel('1/\omega') 
subplot(3,1,3) 
scatter(omega, domega, 'filled'); hold on 
plot(omega, domega_fit, 'r', 'LineWidth', 1.5) 
title('Mixed Model: ω̇ vs ω') 
xlabel('\omega') 
ylabel('ω̇') 

 


