Title: System Dynamics Analysis of Milk Frother
Topic of Interest: Milk Frother

Abstract: This project focuses on the development of a dynamic system and open-loop analysis
of a milk frother following its dissection to understand the motion and system. This system is
simple, as it has no sensory feedback, making it a purely open loop system. We plan to create a
model of the system and describe its open loop system including the steady state behavior and
step response. Then, we will define transfer functions and use Matlab to make Bode plots.

Students/Roles:

Student Task/Role Portfolio

lan State space/block diagram https://mc2839.github.io/fa25-ian-ch
en/projects/MAE3260%20Systems%2
ODissection/

Megan Steady state, step response, https://cornell-mae-ug.github.io/sprin
disturbance g-2025-portfolio-Megan327/projects/
E-SystemsDissection/

Ayanna Matlab and plots https://cornell-mae-ug.github.io/fa25
-portfolio-asf225-stack/projects/Syste
ms/

Caroline Transfer Functions https://cornell-mae-ug.github.io/fa25

-portfolio-c876pm224/projects/Syste

m_Dynamics_Milk_Frother/

Non-exhaustive list of concepts or skills to explore and demonstrate:
e Models:
o ODEs
o TFs
o State space
o Block diagrams
e Open-loop system:
o Steady state behavior
o Step or frequency response

https://mc2839.github.io/fa25-ian-chen/projects/MAE3260%20Systems%20Dissection/
https://mc2839.github.io/fa25-ian-chen/projects/MAE3260%20Systems%20Dissection/
https://mc2839.github.io/fa25-ian-chen/projects/MAE3260%20Systems%20Dissection/
https://cornell-mae-ug.github.io/spring-2025-portfolio-Megan327/projects/F-SystemsDissection/
https://cornell-mae-ug.github.io/spring-2025-portfolio-Megan327/projects/F-SystemsDissection/
https://cornell-mae-ug.github.io/spring-2025-portfolio-Megan327/projects/F-SystemsDissection/
https://cornell-mae-ug.github.io/fa25-portfolio-asf225-stack/projects/Systems/
https://cornell-mae-ug.github.io/fa25-portfolio-asf225-stack/projects/Systems/
https://cornell-mae-ug.github.io/fa25-portfolio-asf225-stack/projects/Systems/
https://cornell-mae-ug.github.io/fa25-portfolio-cpm224/projects/System_Dynamics_Milk_Frother/
https://cornell-mae-ug.github.io/fa25-portfolio-cpm224/projects/System_Dynamics_Milk_Frother/
https://cornell-mae-ug.github.io/fa25-portfolio-cpm224/projects/System_Dynamics_Milk_Frother/

Milk Frother:
|

WhISK i: SR Y ESEEE e
D) ‘ | ‘Shaft

Figure 1: milk frother dissected

The whisk is driven by a 3 coil brushless DC motor powered by batteries. The motor is
connected to a shaft via a spring. The spring acts as a flexible coupler between the motor and
the shaft so the two do not have to be perfectly aligned. When powered, the whisk will start
turning counterclockwise (when looking down from the handle). Then, it seems to operate at a
constant steady steady rotation rate. When powered off, the whisk starts slowing and
eventually comes to an abrupt stop.

Open Loop Behavior:

To observe the open loop behavior, we turned on the milk frother and waited for it to reach
steady state. Then, we used a high speed camera to record the behavior. 1275 frames were
recorded at 900 frames per second. The video was played back at approximately 30 frames per
second. We manually counted 40 rotations for 6 seconds. This means that our milk frother’s
steady state speed was around 12000 rotations per minute or 1240 rad/s. This is similar to the
reported RPM of milk frothers on the internet.

Then, we recorded the step response of the milk frother. To do this, we started from a steady
state and turned off the frother. Every 60 frames (2 seconds of the playback video), the angular
velocity was approximated by counting the number of frames for one rotation.

Ramp Down Data Collection:

When finding the angular velocity at different times in the video, we looked at the high speed
video frame by frame. Within the ramp down video of the milk frother, the video took 900
frames per second(fps), this resulted in a 44 second video from about 1.4 seconds worth of live
content. From there, we measured how many frames it took for one full rotation(fpr) every two
seconds of the video. This allows us to find the rpm at each second of the video, and then the
rpm at each second in real time.

Finding rpm per each second of the video:

_ _60%fpr

video second fps

rpm

Converting the times in the video to time in real life:

4 _Frames inVideo
video fps

treal = Video Length

Ramp Down Data:
Following the steps outlined above, we collected and graphed the following data:

Ramp Down Speed
® s -114x + 158 R? = 0.976
12500
10000
£ 7500
=
=1
<]
@ 5000
0]
2500
0
0.0000 0.2500 0.5000 0.7500 1.0000 1.2500
Time(s)

Figure 2: rotation rate measured every 2 seconds for the on to off step response of the frother

System Dynamics:

To accurately describe the system dynamics of the milk frother as it ramps down, we need to
determine which physical damping model is best and how this helps us extract information
about how the motor and whisk loses power. The rotational speed can decay due to various
reasons such as friction in the bearings, leading to viscous damping modeled by:

w(t) = oooe_t/T

w(t): angular velocity as a function of time (rad/s)
W,: angular velocity at switch-off (initial condition) (rad/s)
t: time since switch-off (s)

T: time constant for exponential decay, T=J/b (s).
b: linear (viscous) damping coefficient (N-m-s/rad).

If instead the decay is dominated by aerodynamic drag, it is governed by a quadratic torque
model, algebraically represented by:

1_ 1,
m(t)_m0+]t

J: moment of inertia of rotor + whisk (kg-m?)
c: quadratic (aerodynamic) drag coefficient (N-m-s¥rad?), with drag torque Td,ag=—cw2.

Lastly, if the decay is a mix of both aerodynamic drag and viscous damping, we get a mixed
linear model described by:

W

2

]C;—t +bow+co =0
A Matlab script can then be written, comparing the models and their accuracy (via R?) to
identify which physical model fits the milk frother coast down the best. This allows us to

estimate certain system parameters.

MatLab output (code in Appendix)

===== MODEL FIT RESULTS =====

Viscous model R*2: 0.9121 (tau = 0.5893 s)
Quadratic model R™2: 9.5784 (c/] = 0.006045)
Mixed model R"™2: 0.4103 (a = ©.927910, b = 0.000745)

>>> BEST MODEL: Viscous <<<

Viscous Test: In(w) vs t

36
£5
4 | 1 1 | 1 1 ._I
0 0.2 0.4 0.6 0.8 1 1.2 1.4
x102 Quadratic Test: 1/w vs t °
§_ 10
o]
e 0 © []
. | 1 | 1 | |
0 0.2 0.4 0. 0.8 1 1.2 1.4

Mixed Model: @ \g w

0
® o L)
3
-2000 o

3000 1 | 1 1 1 ® 1
0 200 400 600 800 1000 1200

w

The R? value is the highest for the viscous model, implying that the ramp down systems
dynamics is dominated by viscous damping, likely from the friction in the motor. While the code
calculates constants from the slope in each graph. Since we can now determine the system to
be dominated by viscous damping, we don't look at the c/J, a, and b values, as the tau is the
most accurate.

Since we are only now looking at the viscous model, the time constant was calculated to be {}s.
We also manually timed the time it took for frother to fully stop, averaging out to 1.846s.

Aln(w) =7.16902 - 4.87911 = 2.28991

W, — 0.632 V.= 7.16902 - 0.632 (2.28991) = 5.722

From the MatLab plot, this corresponds to a T of 0.8528. With a T of 0.5893 calculated by T =
-1/slope in the code, this leads to a 44.71% error, which while large, is acceptable when putting
the scale of the values into reference. Since this is a first order system, the difference between t
values only scales the time axis, stretching the graph, it does not distort the overall shape of the
model.

We can also then calculate J/b:
T=]/b = 0.8528

State Space Model:

Our system is a first-order ODE, therefore to find the space state model of this system, we take
the state so that it is the output. Therefore, x = w, and X = .

The resulting function becomes:
Jx + bx = Ku(t)

Solving for the state equations:
w = |-+ [Fuo
The output is the same as the state, therefore the equation for the output is:
y=X=w

The state-space matrices 4, B, C, D become:

a=|-2|x B=|*uw, c=m1x Dp=10

Block Diagram:

The transfer function of the ODE is:
G(S) — Q) _ K

U(s) ~ Js+b

Therefore, the block diagram for this system becomes:

ult) — | K | — 1/ls+b — W(t)

Gain Plant

e u(t) represents the electrical input, specifically the motor’s applied voltage, provided by
the batteries.

e Krepresents the actuator gain, characterizing the efficiency in which the motor converts
the input voltage into torque.

e 1/Js+b represents the plant, converting torque into angular velocity. The term Js
captures the rotor’s rotational inertia, and b represents viscous damping from fluid.

® W(t) represents the system output in angular speed.

Changing Disturbance:

To use the milk frother, it needs to spin in milk, not air. We were unable to document this
behavior, but we can discuss what would happen to the system if the disturbance is different. A
different fluid would change the drag force on the whisk, which means there would be an extra
drag factor of bw. This means the governing equation from above would still hold, except the
time constant and damping value would be different depending on the fluid.

MatLab Code:

oe

--- RAW DATA ---
= [
.0000
.0675
.1349
.2024
.2699
.3374
.4048
.4723
.5398
.6073
.6747
. 7422
.8097
.8772
.94406
.0121
.0796
.1471
.2145
.3495

o)

; % time in seconds

— P P PP PO OO 0O 0O 00O 0O 0O o o o o o o

rpm = [
10800

9000

9000
7714.285714
6750

6750

6750

6000

5400

5400
4695.652174
4320
3857.142857
3272.727273
3000
2571.428571
2204.081633
1800
1285.714286
642.8571429

1; % measured rpm values

[o)

% Convert rpm — rad/s
omega = rpm * 2*pi/60;

o\°

1. VISCOUS DAMPING TEST
w(t) = o0 * exp(-t/1)

o o° o° P

In omega = log(omega) ;

[o)

% Linear regression: In(w) = a + b t
p_visc = polyfit(t, 1n omega, 1);

In fit = polyval(p visc, t);

% Extract time constant =T

tau = -1/p_visc(1);

o)

% Compute R?

SS res visc sum((ln omega - 1ln fit)."2);
SS_tot visc = sum((ln omega - mean(ln omega)).”2);

R2 visc = 1 - SS _res visc/SS_tot visc;

o\°

2. QUADRATIC DRAG TEST
1/w(t) = 1/w0 + (c/J)t

o o° o° e

inv_omega = 1 ./ 1ln _omega;
% Linear regression

p_quad = polyfit(t, inv_omega, 1);
inv _fit = polyval (p quad, t);

% Extract slope = c/J

c over J = p quad(l);

% Compute R?

SS res quad = sum((inv_omega - inv fit)."2);

SS_tot quad sum((inv_omega - mean (inv_omega)) .”"2);
R2 quad = 1 - SS_res quad/SS_tot quad;

o\°

3. MIXED MODEL (NONLINEAR FIT)
do/dt = -a © - b ©?

o o0 o° o° oe

Numerically estimate dw/dt
domega = gradient (omega, t);
% ODE model: domega/dt = -a*omega - b*omega.”2
model fun = @(p, w) -—(p(l)*w + p(2)*w."2);

% Nonlinear least squares fit
p0O = [0.1, 0.0017]; % initial guess [a, Db]

p_mixed = lsqgcurvefit (model fun, p0, omega, domega);

a p mixed(1l);

o

= p mixed(2);
% Mixed model prediction
domega fit = model fun(p mixed, omega);

o)

% Compute R?

SS_res mixed = sum((domega - domega fit)."2);
SS_tot mixed
R2 mixed = 1 - SS res mixed/SS_ tot mixed;

sum ((domega - mean (domega)) .”"2);

o\

REPORT RESULTS

o° oo o°

fprintf ('\n===== MODEL FIT RESULTS =====\n');

fprintf ('Viscous model R"2: $.4f (tau = %.4f s)\n', R2 visc, tau);
fprintf ('Quadratic model R"2: $.4f (c/J = %.6f)\n', R2 quad, c_over J);
fprintf ('Mixed model R"2: %.4f (a = %$.6f, b = %$.6£f)\n', R2 mixed, a,
b);

% Determine best model

[~, 1dx] = max([R2_visc, R2 quad, R2 mixed]);

models = ["Viscous", "Quadratic", "Mixed"];

fprintf ('\n>>> BEST MODEL: %s <<<\n\n', models (idx));

y_target = 5.722;

X _target = (y target - p visc(2)) / p visc(l);

% PLOTS

figure;

subplot (3,1,1)

scatter(t, 1In omega, 'filled'); hold on
plot(t, 1n fit, 'r', 'LineWidth', 1.5)
title('Viscous Test: 1ln(\omega) vs t')
ylabel ('1ln (\omega) ")

subplot (3,1,2)

scatter(t, inv_omega, 'filled'); hold on
plot(t, inv_fit, 'r', 'LineWidth', 1.5)
title('Quadratic Test: 1/\omega vs t')
ylabel ('1/\omega')

subplot (3,1, 3)

scatter (omega, domega, 'filled'); hold on
plot (omega, domega fit, 'r', 'LineWidth', 1.5)
title('Mixed Model: & vs ')

xlabel ('\omega')

ylabel ("o")

